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and the counter slit, t is the thickness of the specimen 
and 2A is the breadth of the spot on which the incident 
beam falls. In this case, where the vertical diversion 
of the beam is neglected, both t and A are variable 
factors in the experiment. If the value of /.1. = 
143cm -1, estimated from the mass absorption 
coefficients of oxygen and silicon (Cullity, 1978) and 
the density of SiO2, and the goniometer radius of 
L=  175 mm are entered into (13), AO is found to be 
less than 9 x 10 -3° for 20 > 90 °. On the other hand, 
the analytical process of a personal computer is 
effective to six figures and its precision of calculation 
is better than 0.001 °. The difference between 20a and 
20th is at most 0.02 ° because the goniometer has a 
precision of 20 =0.01 ° and is scanned with a step 
width of 0.01 ° in 20. All errors involved in the analysis 
can therefore be reduced through the mechanical 
accuracy of the goniometer. Consequently, it is 
definitely possible by adopting this analytical method 
to obtain a higher analytical accuracy when the 
accuracy of the goniometer is improved and the step 
width is reduced. 

The authors thank Dr T. Fujii of the National 
Research Institute for Metals for his encouragement 
and advice. 
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Abstract 

The structural description, symmetry and diffraction 
properties of incommensurate modulated phases are 
revised using a real-space framework. The superspace 
formalism usually employed is reformulated using a 
practical description where no multidimensional 
geometrical constructions are needed. The incom- 
mensurate structural distortion is described in terms 
of 'atomic modulation functions' where the internal 
space is only considered as a continuous label for the 
cells of the non-distorted structure. Hence, no atomic 
positions or thermal tensors in a multidimensional 
space are defined. By this means and with the 
introduction of the concept of 'atomic modulation 
factors' a general expression for the structure factor 
is proposed which constitutes a direct generalization 
of the standard expression for a commensurate struc- 
ture. The concept of superspace symmetry is reduced 
in this approach to a simple relation between the 
defined atomic modulation functions, which can be 
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directly translated by means of the structure-factor 
expression into the symmetry and extinction rules of 
the diffraction diagram. The advantages of superspace 
formalism in the analysis of commensurate modu- 
lated phases are also discussed. The use of superspace 
groups for describing the symmetry of superstruc- 
tures, contrary to some recent claims, does not for- 
mally reduce the number of structural parameters but 
may often allow some of them to be neglected. 

I. Introduction 

In the last few years, the structural analysis of incom- 
mensurate (IC) modulated phases has greatly pro- 
gressed through the introduction of the superspace 
symmetry concept (de Wolff, 1974, 1977; Janner & 
Janssen, 1977, 1979, 1980; Yamamoto, 1982b). The 
number of IC structures which are determined using 
superspace formalism is increasing constantly (van 
Aalst, den Hollander, Peterse & de Wolff, 1976, 
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Yamamoto, 1982a, c, 1985; Yamada & Ikeda, 1984; 
Yamada, 1985; Baudour & Sanquer, 1983; Steurer & 
Adlhart, 1983; Kucharczyk & Paciorek, 1985; van 
Smaalen, Bronsema & Mahy, 1986; Madariaga, 
Zuniga, Perez-Mato & Tello, 1987). This formalism 
includes, in the form presently used, the definition 
of a 'supercrystal' in a (3+d)-dimensional  space 
(superspace), where d is the number of independent 
modulation wave vectors. The structure factor and 
symmetry properties are then referred to this multi- 
dimensional construction, which includes (3+ 
d)-dimensional atomic position vectors and (3 + d) x 
(3+d)  thermal tensors (Yamamoto, 1982b). This 
approach is specially useful for determining and 
classifying all possible symmetries (superspace 
groups) of an IC structure (de Wolff, Janssen & 
Janner, 1981; Janner, Janssen & de Wolff, 1983a, b, c). 

Recently, a practical description of an IC structure, 
its diffraction pattern and its symmetry, equivalent to 
the usual superspace description but avoiding the 
'supercrystal' concept, was suggested (Perez-Mato, 
Madariaga & Tello, 1986). In the present work this 
alternative approach is further developed. The con- 
cept of 'atomic modulation functions' is introduced 
for describing an IC modulated structure, and the 
superspace symmetry and structure factor are 
expressed in terms of them. The essential difference 
between the superspace formalism usually considered 
and its present formulation is that the 'internal space' 
is interpreted here as a parametric space on a different 
level from the real space, as proposed originally by 
de Wolff (1977) in the early stages of the theory. 
Consequently no multidimensional geometrical con- 
structions are used. This approach introduces a work- 
ing basis where all relevant expressions are easily 
interpretable as they refer to real-space physical mag- 
nitudes and their modulations. In this manner, some 
basic points are clarified. 

In order to simplify the formulation, the case of 
an IC displacive structure with a one-dimensional 
modulation (one independent wave vector) is the one 
considered in detail. However, the formalism can 
easily be generalized and for further reference the 
expressions for a general IC structure with a 
d-dimensional modulation of mixed displacive and 
positional disorder character are given in the Appen- 
dix. It should be stressed that the following discussion 
only refers to modulated structures. 

2. Structure description 

In general, a displacive IC structure can be described 
by a non-distorted (commensurate) configuration, 
usually called basic structure and normally associated 
with a higher-temperature phase, and a displacement 
field u(/z, T). The position for each atom /z (/z = 
1 , . . . ,  s) in each basic primitive cell T is then given by 

r(/z, T) = r~ + T + u(/z, T). (1) 

We denote by r~ the basic structure position of atom 
/x with respect to the cell origin. The displacement 
field u(/z, T) therefore defines the distortion between 
the basic structure and the modulated one. In the 
case of a one-dimensional IC modulation this dis- 
placement field can be expressed in the form of a 
discrete Fourier series (de Wolff, 1977; Yamamoto, 
1982a, b, c, d): 

u(/z, T) = ~  u~ exp(i2~rnk .T) n =0,  + 1 , . . . .  
rl  

(2) 
Thus, only one independent wave vector k exists in 
the modulation, which is incommensurate with the 
basic lattice in the sense that the identity 

Gp + p k  = 0, (3) 

where p is any integer and Gp any basic reciprocal- 
lattice vector, is only fulfilled if Gp = 0, p - 0. In (2), 
u~ are complex vectorial amplitudes satisfying u_~, ---- 
Un ~*. 

The IC modulation is therefore described by a 
superposition of plane-wave distortions whose 
wavelengths are successive harmonics of the one 
associated with the IC wave vector k. We have 
included in (2) a homogeneous term u6 ~. Thus, the 
'average' structure resulting from averaging the 
modulation in the whole crystal is then given by the 
basic lattice and the atomic positions, 

ra~o = r~ +u6". (4) 

The concepts of basic and average structure have 
sometimes been confused (Fjaer, 1985). The choice 
of basic structure is not unique, the most convenient 
one usually being a high-temperature normal phase 
which can be independently determined. On the other 
hand, the average structure is in principle uniquely 
determined by the IC structure, but does not exist as 
a real structure. It is not completely known until the 
IC structure has been fully determined (see § 4). For 
practical reasons, the basic structure should have a 
space-group symmetry equal to or higher than the 
average structure. 

A distorted structure as described by (1) and (2) 
has a diffraction pattern characterized by diffraction 
vectors of the form 

H= (hi, h2, h3, m ) = G +  mk, (5) 

where G is any basic reciprocal-lattice vector and m 
any integer. This is the four-integer indexation scheme 
characteristic of a one-dimensionally IC modulated 
structure (de Wolff, 1974). Owing to the small magni- 
tude of the distortion, the reflections with m = 0 (main 
reflections) are typically much stronger than those 
with m # 0 (satellites) (de Wolff, 1974, 1977). 

It should be noted that the description above is 
also valid for commensurate distorted structures (with 
a commensurate wave vector kc). The only difference 
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is that in this case the number of terms in (2) is finite, 
as there is only a finite number of integers { n'} which 
give rise to non-equivalent wave vectors n'kc. In con- 
trast, for an incommensurate wave vector the number 
of terms allowed in (2) is in principle infinite, as the 
n vectors are all non-equivalent. It is this situation 
that makes the indexation of reflexions according to 
(5) meaningful and unique. If we consider the com- 
mensurate case, (5) can always be reduced with the 
aid of (3) to a normal indexation in terms of a new 
three-dimensional reciprocal lattice. 

We are making a very formal difference between 
commensurate and incommensurate wave vectors. 
Obviously such a sharp border between these two 
concepts does not exist from an empirical point of 
view. The continuous change of the wave vector with 
temperature or other variables has been taken as one 
of the few definite signs of the IC character of a 
structure, but even if the wave vector stays constant, 
the assignment of an IC character should not always 
be disregarded (see § 7). 

In order to complete the preceding static descrip- 
tion of an IC structure, the effect on its diffraction 
properties of the thermal vibrations must be included 
through the consideration of a thermal tensor B(/z, T) 
for each atom. The values of this symmetric tensor 
are necessarily distributed according to a modulation 
analogous to that for the atomic displacements: 

B(p., T) = ~  B~ exp(i27rnk. T) n =0,  + 1 , . . . .  

" (6) 

The sum is again extended to any integer n and B~ 
are complex tensorial amplitudes (each component 
has its own independent phase) satisfying B"_, = B~*. 

Consequently a complete investigation of an IC 
structure should include the determination of the 
basic structure, the wave vector k and the Fourier 
amplitudes ~' " u , ,  B, (n =0,  + 1 , . . . , / ~  = 1 , . . . ,  s). The 
infinite number of parameters which in principle 
should be considered is no surprise, if we take into 
account that the number of different atomic displace- 
ments u(/z, T) present in the structure is also infinite. 
It could be argued that in a physical situation the 
number of non-zero terms in (2) will be quite low. 
This is not always true, as can be seen for instance 
for the predicted soliton regime (McMillan, 1976; 
Dvorak, 1980) in the vicinity of a lock-in phase, where 
the modulation wave vector takes a commensurate 
value. However, in this case also, the number of 
parameters to describe the distortion can be small if 
the atomic modulation functions introduced in the 
next section are used. 

It should be stressed at this point that the ampli- 
tudes n~ have in general independent phases (one 
for each component), which need to be determined 
in the structural analysis. Therefore, contrary to what 
has often been assumed (Blinc, 1981; Blinc, Lozar, 

Milia & Kind, 1984), it is erroneous to consider that 
close atoms (in comparison with the wavelength of 
the modulation) 'are displaced in phase'. This 
approximation would be valid only if the modulation 
corresponds to an acoustic mode close to the 
Brillouin-zone centre. In fact, as will be discussed in 
§ 5, in general only modulations of atoms related by 
superspace symmetry operations in the IC structure 
have non-independent initial phases. 

3. Atomic modulation functions 

A very practical description of IC structures can be 
obtained by introducing the 'atomic modulation func- 
tions' (AMF's): 

u~'(v) --- )-'. u~ exp(i2,n'nv) n = +1 . . . .  (7a) 
rl 

B"(v)=-Y. Bf exp(i27rnv) n = + l , . . . .  (7b) 
t l  

Thus, the AMF's are periodic functions (of period 1) 
along a continuous 'internal' variable v, and they are 
defined as Fourier series with the same amplitudes 
as those corresponding to the discrete displacement 
and thermal tensor fields u(/z, T) and B(/z, T) in (2) 
and (6) respectively, except for the homogeneous 
terms u~ and B~. Accordingly, 

u(/z, T) = u~ + u~'(v = k.  T) (8a) 

B(,u,, T) = B~ + B~'(v = k .  T). (8b) 

Owing to the periodicity of the AMF's, the value of 
k .  T in (8) can be reduced to an equivalent one in 
the interval (0, 1). On the other hand, the IC character 
of k ensures that these values form a dense set in the 
interval mentioned. The AMF's u~'(v), B~(v), 
together with the homogeneous terms n~ and B~' and 
the wave vector k, contain therefore in a compact 
form complete information about the structural dis- 
tortion. Only the additional knowledge of the basic 
structure is needed to reproduce by means of (8) the 
whole IC structure. This description does not imply 
a continuous approximation of the basic cell coordin- 
ate and is only based on the IC character of the 
modulation wave vector. It is obviously completely 
equivalent to the description of the distorted structure 
by means of the Fourier amplitudes u~ and B~ in (2) 
and (6). However, it can be much more effective to 
describe for instance symmetry properties, atomic 
displacement correlations and distortions whose 
AMF's are rather simple despite having as a Fourier 
series a slow convergence. Moreover, by use of the 
AMF's the structure factor of an IC structure can be 
expressed (see next section) in a compact and simple 
form. 

In the usual superspace description (de Wolff, 1974, 
1977; Janner & Janssen, 1977, 1979, 1980) the param- 
eter v is put on the same level as the three-dimensional 
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coordinates, and a four-dimensional space (super- 
space) is constructed where the AMF's configure a 
four-dimensional structure (supercrystal). The sym- 
metry operations and the structure factor are then 
referred to this supercrystal. Although this construc- 
tion introduces complex geometrical relations and 
concepts like four-dimensional atomic thermal 
tensors, it was considered the simplest form for 
obtaining a simple expression for the structure factor, 
as well as describing and applying the symmetry 
properties of the structure. However, the AMF's can 
be introduced as above, without reference to a 'super- 
crystal'. The parameter v is then reduced to its strict 
meaning of a quasi-continuous label for the basic 
cells, while the magnitudes that the AMF's describe 
are kept three-dimensional. As will be shown in the 
next section, this approach does not imply any cost 
to the simplicity of describing the diffraction proper- 
ties and symmetry relations. On the contrary, these 
latter can be reduced to clarifying and practical 
expressions. 

It should be pointed out that according to (8) the 
AMF's can be globally translated along the internal 
coordinate v by an arbitrary amount without changing 
the structure that is being described. All the values 
represented by the AMF's are still realized in the 
structure following the same relative sequence in the 
basic cells. This corresponds to the well known phase- 
translation freedom of the modulation in IC systems 
(Cowley, 1980). 

The long-range order expected in an IC structure 
is not obvious from the above description. In fact, as 
the form of the AMF's is in principle arbitrary it 
includes cases which will practically correspond to a 
disordered structure. As stressed by de Wolff (1984), 
an implicit qualitative property of the diffraction 
diagram of IC systems has to be considered to distin- 
guish between the two cases: the fact that the index 
m [see (5)] of the observed satellites has rather low 
values. If this were not so, as any point of reciprocal 
space can be indexed according to (5), the corre- 
sponding diffraction pattern would approximate the 
diffuse diagram typical for a disordered system. This 
restriction on the number of observed reflexions has 
been assumed to imply in general that the AMF's are 
'smooth' (de Wolff, 1984). This smoothness should, 
however, be interpreted in a broad sense. If the AMF's 
are for instance step functions with a small number 
of steps per period, the diffraction pattern is still 
typical of an IC structure (Perez-Mato & Madariaga, 
1986). In any case, the number of parameters 
necessary for describing tl~e AMF's must be small 
compared with the number of cells whose structural 
distortion they describe. 

4. Structure factor 

It was shown by Perez-Mato, Madariaga & Tello 
(1986) that the structure factor of an IC structure can 

be expressed by means of the AMF's in a simple and 
clarifying form. To this end the so-called 'atomic 
modulation factors' were introduced to allow a dis- 
crete sum for all cells T to be reduced to an integral 
in the internal parameter v. We extend here these 
results when thermal parameters or more precisely 
their corresponding AMF's are considered. In this 
case, following the same arguments, the structure 
factor for an allowed reflexion H of the form (5) can 
be written as 

F ( H ) =  ~ fl'(H)g~'(H) 
/~=1 

x exp (-I7t. a ~ .  H)exp  (i2~rH. ra"v), (9) 

where f~" (H) denotes the atomic scattering factor and 
the 'atomic modulation factors' g~' (H) are defined as 

1 

g~(H) = ~ dv exp [-171. B~'(v). H] 
0 

xexp{i2"n'[H.u"(v)+mv]}. (10) 

Equation (9) is a simple extension of the usual form 
for commensurate structures. It can be interpreted as 
the 'normal' structure factor of the average structure 
corrected by means of the modulation factors g"(H).  
These latter contain in a compact form the effect 
caused by the modulation of the atomic positions and 
the thermal tensors. According to (9), this effect can 
be obviously assimilated to a correction through the 
factor g" (H) of the scattering power of each atom in 
the primitive cell of the average structure. However, 
it should not be disregarded that, in contrast to the 
normal structure-factor expression, (9) is also valid 
for diffraction vectors of the form (5) with m # 0. 

The advantage of expressions (9) and (10) over 
previous ones (de Wolff, 1974; Yamamoto, 1982a, b, 
c, d), apart from their simple interpretation given 
above, is that the magnitudes which appear in the 
formulas are all defined in the real three-dimensional 
space. Note that even the practical expression for the 
structure factor given in de Wolff (1974) after 
developing the four-dimensional structure factor is 
not directly analogous to (9) and (10). In our notation, 
the expression in de Wolff (1974) includes instead of 
H.r~v the product ( H - m k ) .  ray, ~ preventing the 
simple interpretation discussed above. A few further 
manipulations using the characteristics of the super- 
structure defined in the four-dimensional formalism 
are required to transform the expression into a form 
equivalent to (9) and (10). 

It is important that (9) includes as a particular case 
that of a commensurate structure. Thus, if the AMF's 
are identically zero, the modulation factors (10) 
reduce to zero and unity for the satellites and the 
main reflections respectively. Equation (9) then 
becomes the structure factor of a commensurate 
structure. 
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The effect of the temperature-factor modulation on 
the diffraction diagram as given in (9) and (10) can 
be compared (Garcia, Perez-Mato, Madariaga & 
Zuniga, 1987) with other approaches where particular 
models for the dynamics of the IC structure have 
been considered (Overhauser, 1971; Axe, 1980). 

The average structure as defined in (4) is usually 
assumed to coincide with that resulting from con- 
sidering only the main reflections (m =0) in the 
diffraction pattern of the IC structure. According to 
(9), this assumption is valid if the factor g~'(H) can 
be assimilated into an additional fictitious tem- 
perature factor. In fact, this happens approximately 
in the sinusoidal regime, when the AMF's for the 
atomic positions have only one harmonic. However, 
in a general case it is not even certain that the atomic 
modulation factors have real values (Perez-l~4ato & 
Madariaga, 1986). 

5. Superspace symmetry 

Equations (9), (10) and (8) can be taken as the starting 
point for a structural analysis of an IC phase based 
on its experimental X-ray diffraction pattern. 
However, as in the case of commensurate structures, 
symmetry arguments should be used to reduce to a 
minimum the number of structural parameters to be 
determined. Usually the AMF's of symmetry-related 
atoms in the basic structure are not all independent. 
There exist relations among them which cause the 
rotational symmetry and systematic extinctions of the 
diffraction pattern. From this perspective, the theory 
of superspace symmetry is a systematic method to 
describe and apply these relations and their con- 
sequences. 

Superspace symmetry theory is normally intro- 
duced referring to the four-dimensional 'supercrystar 
mentioned before. However, it has been shown in the 
preceding section that this construction can be 
avoided in obtaining a practical expression for the 
structure factor. Something similar happens with 
superspace symmetry and the resultant diffraction 
regularities. 

Let us consider first what happens when we apply 
an operation {RIt} of the basic structure space group 
~b to the IC structure. In general, we obtain a new 
IC structure, whose basic structure coincides with the 
old one, but the atomic displacements have been 
interchanged and rotated according to the applied 
operation. Let us consider for instance two atoms,/x 
and v, which are symmetry related by {R[t} in the 
basic structure: 

Rr~ + t = r~, +T  ~. (11) 

After the operation is applied, the new values, 
utr(~', T ~') and Btr(V, T ~'), of the displacement and 
thermal tensor of atom ( l,, T ~') are then given, in terms 

of the non-transformed values for atom (Ix, 0), by 

utr( u, T" ) = Ru(/x, 0), (12a) 

Bit(v, T~) = RB(/~, 0)R -1 . (12b) 

In this manner, a new structural distortion is obtained, 
which is described in general by a new average struc- 
ture, a new wave vector and new A M  F's. Let us 
assume now that for this operation the average struc- 
ture and the wave vector of  the transformed structure 
coincide with those of the original one, while the new 
AMF's  are the init ial  ones but translated by a common 
"internal translation' - r :  

u~(v)  = u ~' (v + r), (13a) 

B~(v) = B~'(v + r). (13b) 

The original structure can therefore be recovered if 
an opposite shift of r along the internal coordinate 
is performed after the action of {RIt}. We say then 
that {Flit, r} is a superspace symmetry element of the 
IC structure. The set of all possible elements of this 
type constitute the superspace group of the structure. 
In general, not all symmetry operations of the basic 
structure space group q3b satisfy the above conditions 
and therefore the real space parts {Flit} of all super- 
space-group operations form a subgroup of q3b which 
is contained in the space group of the average struc- 
ture and, except for accidental cases, will coincide 
with it. 

From the definition of the AMF's, it can easily be 
seen that the operations { E I T , - k . T + n }  ( n =  
integer), where {EIT} is any basic lattice translation, 
are always elements of the superspace group. They 
do not therefore cause any particular restriction on 
the structure and correspond to the four-dimensional 
Bravais lattice of the supercrystal in the superspace 
formalism. The existence of any other superspace 
symmetry operation {Flit, r} implies, however, definite 
relations between the AM F's of those atoms which 
are symmetry related in the average structure by {Flit}. 
The relations can be expressed in a simpler form if 
the origins of the AM F's are shifted in the form 

u'~'(v) = u~'( v - k .  r~) (14) 

and similarly for the thermal tensor functions B'"(v). 
These shifted AMF's exclude the phase differences 
between the atomic modulations owing to their 
different atomic positions in the basic cell. A 
necessary and sufficient condition for {Rlt, r} to be a 
superspace-group operation is then that for any two 
atoms/z, v, related by {Rlt} in the basic and average 
structures [see (11)], their shifted AMF's are related 
in the form 

u'~'(Rp) q- 7"0) = R u ' ( v )  (15a) 

and analogously 

B ' " (R ,v+ . ro )=RB '~ (v )R  - '  (15b) 
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where R~ = + 1  ( -1)  if Rk= +k ( -k )  and ro = ~ + k  .t. 
The proof of the preceding statement is rather cum- 
bersome but straightforward if (12) and (13) are used 
and the procedure indicated in Perez-Mato, 
Madariaga & Tello (1986) is followed. Note that in 
(15) the case of the superspace-group operations 
{EIT,- k .  T +  n} is trivially included. The internal law 
of the group can also be obtained from (15): 

{R2lt2, ~'2}{R, It,, r,} = {R2R, I R2t , +t2, 
R, (R2)~', + ~'2}. (16) 

Relations (15) reduce the number of independent 
AMF's to an 'asymmetrical unit', in terms of which 
the structure factor [(9), (10)] can be expressed. For 
atoms in special positions, such that they are kept 
invariant in the average structure by the operation 
{RIt}, (15) can imply particular restrictions on the 
form of the AMF's, since in this case the labels /z 
and v coincide. 

Another approach to the description of the struc- 
ture and symmetry of an IC modulated phase has 
been given in McConnell & Heine (1984). We con- 
sider that this approach, which differs considerably 
from the present formulation and the standard super- 
space formalism, is not the most appropriate way to 
describe IC structures from a crystallographic view- 
point. McConnell & Heine restrict the distortion to 
a sinusoidal modulation, where the real and 
imaginary parts of the amplitudes describe two separ- 
ate 'component structures'. The symmetry conditions 
for these components are justified, in part, by using 
physical models such as the Landau theory. These 
conditions are equivalent to some, but not all, of the 
relations deducible from (15a), employing the group 
structure of the superspace group. Furthermore, the 
generalization of this approach to non-sinusoidal dis- 
tortions becomes unpractical, because each new har- 
monic in the modulation requires two additional 
'component structures' to be considered (in general 
with new symmetries). In addition, while superspace 
formulation includes those IC structures with more 
than one independent modulation wave vector (see 
Appendix), the approach in McConnell & Heine 
(1984) cannot be directly extended to this general 
case. 

6. Diffraction symmetry 

The concept of superspace symmetry of IC phases 
would not have any practical relevance if it did not 
give rise, as it does, to important regularities in the 
properties of the material. In the case of X-ray diffrac- 
tion, the symmetry of the diffraction pattern including 
the extinction rules can be directly related to the 
superspace group of the structure described in the 
preceding section. 

It is straightforward that the structure factor Ftr of 
any structure transformed according to an operation 

{Rlt} is related to that of the initial structure, F, in 
the form 

Ftr(h)=F(Rh)exp(i27rh.t), (17) 

where h is any reciprocal-space vector. On the other 
hand, according to (9) and (10), and considering (13), 
the structure factor of the transformed structure for 
any allowed diffraction vector H should differ from 
the initial one according to the relation 

Ftr(H) = F(H) exp (-i27rmr); (18) 

consequently 

F(FIH)= F(H) exp[-i2~r(H.t+mr)]. (19) 

This last expression summarizes the symmetry 
properties of the diffraction pattern resulting from 
the existence of the superspace symmetry operation 
{RIt, z} in the structure, and corresponds to the one 
obtained in the 'supercrystal' formulation for the 
four-dimensional structure factor ~Janner & Janssen, 
1980). It indicates that reflexions RH and H, for any 
H, are equivalent. Furthermore (19) implies an extinc- 
tion rule, given by the simultaneous conditions 

R H = H  (20a) 

exp[- i27r(H,  t+  mr)] ~ 1. (20b) 

It is interesting to see that, if we consider (20) for 
the case of the superspace-group lattice elements {EIT, 
- k . T + n } ,  the reflection condition (5) is again 
obtained in a self-consistent way. 

7. Commensurate structures 

Superspace formalism and symmetry have also been 
successfully employed in the analysis of commensu- 
rate modulated phases. It has been claimed that this 
approach reduces the number of independent struc- 
tural parameters to be determined (Yamamoto, 
1982a, b, c, d; van Smaalen, 1985) when compared 
with standard methods. Using the preceding 
framework, we look again in this section at the advan- 
tages of such a procedure and particularly the validity 
of the claim of reducing the number of free structural 
parameters. 

Let us consider, to be specific, a commensurate 
modulated structure such that its primitive cell par- 
ameter along the c axis is p times that of the basic 
structure, e. The distortion u(/z, T) relating the two 
structures is then periodic, 

u(/z, T + pc) = u(/z, T), (21) 

and .it can also be expressed in the form (2) with 
k =  kc = (1/p)e*. However, the sum in (2) is reduced 
to a finite number of terms, owing to the equivalence 
between the wave vectors nkc, the largest integer n 
being p/2 [ ( p - 1 ) / 2 ]  for p even [odd]. Thus, the 
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number, 3p, of distinct atomic displacement com- 
ponents ui(/z, T) (~ fixed) coincides with the number 
of free parameters determining the necessary complex 
amplitudes u , .  ~" In fact, the choice of the wave vector 
kc in (2) is not unique and any vector of the form 
(r/p)e* (r, p prime integers) would also be valid, as 
the vectors n(r/p)c* are equivalent one-to-one to 
those used when kc = (1/p)e*. We shall later discuss 
the differences between these possible choices. The 
AMF's (7) can also be defined in this commensurate 
case, but from (8) only their values at a discrete set 
of p points (vt = I /p ,  / = 0 , . . . , p - I )  are relevant, 
each value corresponding to one of the basic subcells 
in the p-fold cell of the distorted structure. 

Expression (9) for the structure factor was obtained 
under the assumption that the wave vector was 
incommensurate. Otherwise the index m in (5) is not 
unique, and the structure factor for a reflexion H is 
then given by (Yamamoto, 1982a, b, c, d; Perez-Mato, 
Madariaga & Tello, 1986) 

F(H)  = ~ F,,,(H), (22) 
/1"!' 

where the sum extends to all possible equivalent 
choices for the satellite index m, and Fm,(H) corre- 
sponds to (9) for a particular choice (m = m'). 

Note that each different indexation influences in 
F,,,(H) only the value of the atomic modulation fac- 
tors g~'(H). Therefore we can also say that (9) is still 
valid with the atomic modulation factors given by 

g~'(n) = ~ g~,(H), (23) 
/11' 

where the meaning of the subindex m' and the sum 
are analogous to (22). Expression (22) is clarified if 
we consider the case when k=(1/p+8)e*,  8 being 
small and incommensurate. In this case, for each 
integer n the diffraction vector (h~, h2, h3 - n, m + np) 
corresponds to a different reflexion, separated from 
the reflexion (h~, h2, h3, m) by npSe*. When t5 
becomes zero, all of them superpose coherently, and 
the structure factor of the unique reflection is now 
the sum of the structure factors of the reflections that 
are superposed, as given in (22). 

The point gives a clue for deciding when to consider 
a phase from the experimental point of view as IC, 
even if the modulation wave vector does not depend 
on temperature or other thermodynamic variables. 
From (22) and (9), the incommensurability 
hypothesis implies the assumption for all reflexions 
that only one term in the sum (22) is non-negligible. 
As stressed in Perez-Mato, Madariaga & Tello (1986), 
the validity of this approximation depends not only 
on the value of the modulation wave vector (a high 
value of p) but also on the influence of higher har- 
monics on the AMF's describing the distortion. 

Even in the case that the structure is clearly com- 
mensurate, it is always possible to use the above AMF 

description including expression (9) for the structure 
factor if, instead of (10), (23) is employed for the 
atomic modulation factor. This expression can be 
reduced to a form where only the values of the AMF's 
at the points vt = I/p are relevant, as one would expect 
from the fact that these are the only values of the 
AMF's which really describe the structure. From (23) 
we have 

1 

g~(H) = )-'. j" dv exp [-17-I. B~'(v). H] 
n 0 

but 

xexp{i2"n'[H.u'~(v)+(m+np)v]}; (24) 

~.exp(i2"a'npv)=(1/p)E S ( v - I / p ) ,  (25) 
n I 

and if (25), (24) and (9) are considered, we obtain 

F(H)=(1/p)  ~ f • (g )  
~ = 1  

p - - I  

x y, exp{-17 t . [B~+a~(v , ) ] .H}  
1 = 0  

xexp(i27r{n.[r~v+u~'(v,)+lc]}), (26) 

where we have used the fact that exp(i2rrH, lc)= 
exp[i2rr(ml)/p]. Thus, (22) reduces to the standard 
expression for the structure factor of the p-fold cell, 
with the atomic displacements at the basic cells lc 
(l = 0 , . . . ,  p -  1) given by the values of the AMF's at 
v t -  lip. All this reasoning indicates that the number 
of structural parameters to be determined does not 
decrease in the superspace approach and the number 
of independent parameters to be included in the AM F 
for one atom/z is equal to 3p (the number of different 
/z atomic-position components in the p-fold cell). 

The advantage of the use of AMF's to describe the 
structure and its diffraction pattern rests however on 
the fact that the new structural parameters (ampli- 
tudes ofthe harmonics in the AMF's) are well adapted 
to exhibit the physical origin of this type of structure. 
The number of effective structural parameters 
decreases when some of the relevant higher harmonics 
are considered negligible for physical reasons. In fact, 
in most cases the amplitudes strongly decrease with 
the order of the harmonic. The different possibilities 
for the value of kc mentioned above correspond then 
to a different choice of what can be considered the 
first and most important harmonic in the distortion. 
As shown below, a differetat choice for kc implies in 
general a different choice for the superspace group 
to be assigned to the structure. 

This situation presented above does not vary quali- 
tatively if the effect of rotational symmetry is 
included. As an example, let us consider a modulated 
commensurate structure with space group P2~ cn, hav- 
ing a fivefold cell along the c axis with respect to a 
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basic structure of symmetry Pmcn. In addition, let us 
suppose that the strongest 'satellite' reflexions are 
those for H = G + ( 2 / 5 ) e * ,  and consequently we 
choose kc as (2/5)e*. 

Consider an atom 3' with a general position in the 
basic structure. In the unit (primitive) cell of this 
structure there are eight symmetry-related 3' atoms 
(~i, i =  1 , . . . ,  8), while the 40 3' atoms in the fivefold 
cell of the modulated structure form ten independent 
groups of four atoms which are symmetry related by 
the elements of P21cn. Therefore the number of 
independent atomic coordinates to be determined for 
this set of atoms in the modulated structure is 30. 

In the superspace formalism, according to (8a) and 
with the fact that for this case k =  kc = (2/5)e*, the 
displacements in the distorted structure of the five 
atoms associated with five consecutive basic cells, 
which are in the basic structure translationally 
equivalent to one of the eight atoms 3'i, are described 
by the values of the corresponding AMF at the points 
vl = 1/5 [l =0(basic  cell 0), l =  1 (basic cell 3), l = 2  
(basic cell 1), l = 3 (basic cell 4), l = 4 (basic cell 2)]. 
If only these five points in the AMF's are physically 
relevant, only terms up to second order are necessary 
in (2) for describing the AMF's  and the structure. 

u~'i(v)=Y, uV, iexp(i2'rrnv) n =0,  +1, ±2. (27) 
/1 

Thus, considering in (27) the complex conjugate rela- 
tion between the vectorial amplitudes of opposite 
index, the number of free parameters to describe an 
AMF is equal to 15, the number of parameters for 
describing the five independent atomic displacements 
for a given atom 3'£ 

Each of the eight 3'i atoms, which are symmetry 
related in the basic structure cell, has therefore associ- 
ated in the modulated structure a certain AMF which 
describes its displacements in five consecutive basic 
cells. However, assignment of a superspace group to 
the modulated structure implies in general that not 
all of them are independent. Let us assign first the 
superspace group P(P21cn):(llT) (for notation see 
de Wolff, Janssen & Janner, 1981). The three non- 
trivial non-translationally equivalent elements of this 
group are {C2x[1/2 0 0, 0}, {try[0 1/2 1/2 , -a /2}  and 
{tr~[1/2 1/2 1/2, -a /2} ,  where a = Ikl/Ic*l. From the 
translation operations of the group, the product rule 
explained in § 5 and the fact that in our case a = 2/5, 
it is easy to check that the superspace group con- 
sidered also contains the operations {o-y[0 1/2 5/2, 0} 
and {O-z[1/2 1/2 5/2,0}. According to § 5, the 
existence of these latter superspace operations, 
together with the first of the three above, implies that 
the modulated structure is invariant for the space- 
group operations {C2x11/200}, {%[0 1/25/2} and 
{Crz[1/2 1/2 5/2}. This ensures that the structure has 
the desired space group P2~ cn. Note that, in contrast 
to the incommensurate case, here an appropriate 

choice of origin in the internal space when describing 
the superspace symmetry operations is fundamental  
for reflecting the desired normal space-group sym- 
metry. 

The superspace-group operations in P(P21en): 
(111) have four different rotational parts. Conse- 
quently, from (15a) the eight AMF's describing the 
displacements of the atoms 7i (i = 1 , . . . ,  8) form two 
independent groups, each with four symmetry-related 
AMF's. As from (27) the number of free parameters 
per AMF is 15, the total number of free parameters 
to describe the whole set of AMF's  for the y atoms 
is 30, the same as in a standard treatment. However, 
what happens if we consider the superspace group 
P(Pmen): ( s l l ) ,  instead of the previous one? This 
group contains P(P21en):(lll) as a subgroup. The 
space group P21cn for the modulated structure is 
therefore still ensured. In fact, it can be checked that 
the additional superspace-group operations present 
in this larger group do not cause any new space-group 
symmetry operation in the structure, Nevertheless, 
these operations further reduce the number of 
independent AMF's  of the 3' atoms to a single one. 
The other seven are related to it according to (15a) 
through the operations of the assigned superspace 
group. Thus, the number of structural parameters for 
the 3' atoms has apparently been reduced by this 
means from 30 to 15. This impression is, however, 
illusory. We consider for instance how the super- 
space-group operation {Crx]l/200 , 1/2} relates two 
AMF's. Note that the 'real-space' part of this 
operation, although present in the basic structure, 
does not belong to the space group P2~ cn. From (15a) 
we have 

u~J(v+ 1/2)  ~,i --Ux(V), ~/J Ti Uy.z(V+i/2)=Uy.z(V), 
(28) 

where 7J and Ti are two 3, atoms related in the basic 
structure by the symmetry operation {trx[ 1/2 0 0}. For 
simplicity r~ has been taken in the ab plane, so that 
the shifted AMF's  [see (14)] coincide with the original 
ones. An example of two AMF's  related according 
to (28) is shown in Fig. 1. It can be seen in the figure 
that the function u~J(v) can certainly be obtained 
from the other one [u vi(v) ], but the physically relevant 
values (at v~ = I/5) of the former are related to the 
values of the function u~i(v) at the points v~= 
(/ /5) + (1/10). In other words, the values of the sym- 
metry-related AMF which are physically realized in 
the structure are related one-to-one to values of the 
initial A M F  at points in the internal parameter v 
different from those corresponding to the five 
inequivalent basic cells. Thus, the reduction to one 
half of the number of independent AMF's  has been 
done at the cost of doubling the number of physically 
relevant points in the AMF's  describing the actual 
atomic displacements in the structure. Consequently 
the reasoning leading to (27) is no longer valid and 
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the number of parameters describing an AMF should 
also be doubled with the introduction of higher har- 
monics. However, if we can neglect some of these 
higher harmonics for some physical or experimental 
reason, a definite correlation between the ten 
independent atomic positions is introduced, which is 
not present in the standard treatment or in the super- 
space formalism when the complete set of harmonics 
for the AMF's is considered. 

If, instead of (2/5)c*, (1/5)c* is taken as the main 
modulation wave vector of the fivefold structure, the 
reasoning is similar but the possible superspace 
groups to be assigned to the structure are different. 
The minimal superspace group containing the 
required space-group symmetry P2~cn is now 
P(P21cn):(1s1). As before, there exists a second 
possible choice of higher superspace symmetry, in 
this case the superspace group P(Pmcn):(ssl). 

Summarizing, we can conclude that, in the super- 
space description of commensurate modulated struc- 
tures, the reduction in the number of independent 
AMF's using a high-symmetry superspace group is 
achieved at the cost of increasing the number of 
relevant discrete values of v necessary in each 
independent AMF for describing the structure. There- 
fore, the number of harmonics determining the 
AMF's of the asymmetric unit is in principle 
increased, and the fixed number of free parameters 
in the structure is again recovered. As indicated 
above, the number of structural parameters to be 
considered are only reduced if these additional higher 
harmonics are neglected for physical reasons (for 
instance, the weakness of higher-order satellites). This 
approximation introduces a correlation between 

0.50 

0.25 

X 

0 , s , i , I , , 

I/IB 1/5 3/IB 2/5 1/2 3/5 7lib 4/5 9/10 
V i 

Fig. 1. Example of two AMF's related by the superspace symmetry 
operation {o3,[1/2 0 0, 1/2} [see equations (28)]. Only their com- 
ponents along the a axis are shown. The atomic displacements 
present in the commensurate modulated structure, with respect 
to the average structure positions given by the broken horizontal 
lines, are indicatedrby the symbols • and O. The atomic positions 
in the upper AMF (A) are related to those of the lower AMF 
at the points v~= 1/5+1/10, different from those structurally 
relevant in the lower AMF (0) at v~ = 1/5. 

atomic positions not contained in a standard treat- 
ment. The correlation disappears when all harmonics 
allowed in the modulation are included. Therefore, 
we can conclude that in general the power of super- 
space formalism applied to commensurate structures 
is based on the fact that the magnitude of some of 
the structural parameters employed can be very small 
for physical reasons. This approach will be par- 
ticulary useful when the commensurate phase is due 
to a sinusoidal distortion slightly modified by sec- 
ondary modes of shorter wavelength. 

If the commensurate structure originates in a phase 
transition where Landau theory is applicable, super- 
space formalism is the adequate form for separating 
in the description of the structural distortion the 
contributions of the order-parameter mode from 
those of other coupled secondary modes, whose mag- 
nitude strongly decreases with their coupling order 
(Perez-Mato, Madariaga & Tello, 1984; Perez-Mato, 
Gaztelua, Madariaga & Tello, 1986). 

According to the preceding discussion, the assign- 
ment of a superspace group to a commensurately 
modulated structure is not unique. This fact is reflec- 
ted by the structure factor (22) which loses the proper- 
ties (19) resulting from superspace symmetry, even if 
they are valid for the terms Fro, in the sum. However, 
the approximate symmetry and extinction rules of the 
diffraction pattern, explained in terms of equations 
(19) and (20), is still a sure guide for a choice of a 
superspace group appropriate for neglecting the high- 
est harmonics in the modulation (the small deviations 
from the superspace symmetry diffraction considered 
should be due mainly to these higher harmonics). 

This work was supported by the CAICYT (Spain), 
project n-0906-84. 

APPENDIX 

In this Appendix the expressions appearing in the 
previous text for an IC modulated structure with a 
one-dimensional displacive modulation are general- 
ized, for futher reference, to a general IC modulated 
structure, with a d-dimensional displacive and occu- 
pational modulation. 

In this general case, the structure is described by 
a basic structure, a displacement field u(9., a, T) and 
an occupation probability field p(/z, a, T), where c~ 
( a - - 1 , . . . ,  m, )  now labels the different positions 
associated with a unique atom /x. This occupation 
probability field will satisfy 

t r l  

p(/x, a, T) = 1. (A 1 ) 

The basic structure is given by the atomic positions 
r~ ''~ and an occupation probability for each of them, 

/ d ,  a t  Pb , also fulfilling Y.~ p~,"at = 1. In the case of a pure 
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displacive distortion, where no disorder exists, 
obviously m, = 1 and p(/z, 1, T ) =  1 for any #. The 
expressions for u(/z, t~, T), p(/z, a, T) and the tem- 
perature tensor, which generalize (2) and (7), are then 
given by 

u(/x, a, T)=~] u. ~'~ exp(i2Ek . . T), (A2) 
II 

p(/z, ix, T) = p~'~" + ~] p.~'~ exp( i2 ~rk°. T), (A3) 
n 

B(/z, c~, T ) =  ~ B.~'~exp (iEwkn. T), (A4) 
n 

where n represents any set of integers (nl, n 2 , . . . ,  ha), 
and k. is defined by 

k. = nlkl + n2k2 + . . .  + nakd, (A5) 

where {kl, k 2 , . . . ,  ka } is a set of wave vectors incom- 
mensurate among themselves and with the basic 
lattice. 

The average structure is described by the following 
atomic positions and occupational probabilities: 

ra~ ~ -- -b'~'~ -±"~"~uo (A6) 

PaW a --Fb-- ,,~,a --Fo ~ " ' " ,  (A7) 

where 0 indicates the homogeneous term in (A2) and 
(A3). 

From (A3) and (A1) it can be easily seen that the 
Fourier amplitudes p.~'~ satisfy 

m/~ 

X p.~'~ = 0. (A8) 
o t = i  

Equation (5) becomes 

H = ( h i ,  h2, h3, m l ,  m2,. . . ,  md) = G+km, (A9) 
where km is defined according to (A5). 

The AMF's are now defined along a d-dimensional 
'internal' space, in which again any point 
v = (vl, v2 , . . . ,  va) represents in principle a definite 
cell in the infinite crystal, according to the rule 

T->vr = (kl.  T, k2. T , . . . ,  kd. T). (A10) 

The AMF's can then be written as 

A f " " ( v ) = ~ '  p~."~ exp (i2~rn. v), (Al l )  
II 

u~'~(v) = ~'  u.  ~'~' exp (i27rn. v), (ALE) 
n 

B'~(v)  = ~ '  B. ~''~ exp (i27rn. v), (A13) 
n 

where n. v is a short symbol for the 'scalar product' 
~., n~v~, and the primes in the sums indicate that the 
term 0 = (0, 0, . . . ,  0) is excluded. 

The structure factor (9) is now 

F ( H ) = Y , f " ( H )  Y, p~;~g~'~ (H) 
p. t~ 

x exp (-171. B~ '~ . H) exp (i2~rH. ra~v~), 

(A14) 

the atomic modulation factors g ' ~ ( H )  being 

g~'~(H) 
1 1 

= ~ dr1 . . .  [. dvaAp~'°'(v) exp [-ITI. B '~(v) .  H] 
0 0 

x exp {i2w[H. u '= (v )  + m .  v]} (A15) 

where m = ( m l , m 2 , . . . , m d )  corresponds to the 
indexation of the reflexion H in (A9). 

The generalization of equations (13) is immediate, 
adding a new equation for the corresponding occupa- 
tion probability modulation: 

Ape'S(v) = Ap~'~(v+'r), (A16) 

where ,r is the shift in the internal d-dimensional 
space corresponding to the superspace symmetry 
operation {Rlt , ,t}. The restrictions on the AMF's 
imposed by such an operation are also direct gen- 
eralizations of equations (15) with an additional con- 
dition 

Ap'~'~(R~v+'ro) = Ap'~'~(v), (A17) 

where the shifted AMF's are defined with an equation 
analogous to (16) but substituting k.  r~ by the corre- 
sponding d-dimensional vector (kl.  r ~ , . . . ,  ka. r~). 
The atomic 'parts' (/z, a )  and (v, ~) in (A16) are 
related in the average structure in the form 

Rra~v ~ + t = r ~  + T ~'~, (A18) 

Pa~ '=p~ .  (A19) 

The internal translation % is the direct generalization 
of Zo, [ ' r+(kl  . T , . . . , k d . T ) ] ,  and the coefficients 
RI(R) U of the d x d matrix RI(R) are integers defined 
by the equation (de Wolff, Janssen & Janner, 1981; 
Perez-Mato, Madariaga & Tello, 1986) 

R-'k, = E Rz(R)okj+ G. (A20) 

This expression makes explicit the condition that the 
action of R -I (or R) on any wave vector kj results in 
a linear combination with integer coefficients of the 
independent set of wave vectors. 

Finally, the symmetry equation for the structure 
factor (23) is also valid, substituting m. ,r for mr. 

In the preceding expressions, we have considered 
occupation probability modulation functions describ- 
ing positional disorder in the structure, such that a 
given atom occupies with a certain probability several 
positions in each basic cell. However, these results 
can easily be transformed to the case of occupational 
disorder, in which several different atoms can occupy 
with a certain probability a given position. We need 
only reinterpret the labels/z and a./x now indicates 
a certain atomic position, subject to the displacive 
modulation, and a the different atoms that can 
occupy it. The subsequent changes in the expressions 
above are then immediate. 
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Abstract 

The rigid-bond condition for harmonic thermal par- 
ameters states that the difference of the mean-square 
displacements of atoms A and B along the covalent 
bond A - B  is negligible. In this paper, the correspond- 
ing condition for non-bonded intramolecular dis- 
tances is called a rigid link. Rigid-body motion 
according to the TLS formalism requires all 
intramolecular links to be rigid. Conversely, a corn- 
piece set of rigid links is not necessarily equivalent 
to rigid-body motion. An algorithm is presented for 
the determination of the maximum number QN of 
independent rigid links of an N-atom molecule. In 
general for site symmetry 1, QN = N - 1  for linear 
and 3 N - 6  for planar molecules. For three- 
dimensional molecules, QN = N ( N  - 1)/2, N -< 8 and 
6 N - 2 0 ,  N->8. For particular geometries, QN may 
be smaller. For many molecules, QN rigid links are 
equivalent to rigid-body motion. Notable exceptions 
are most linear and planar molecules, and all 
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molecules with six or seven atoms. Higher site sym- 
metries reduce and often eliminate these differences 
between rigid links and rigid-body motion. The use 
of rigid-link restraints in crystallographic least 
squares is recommended. They provide a computa- 
tionally simple means of relaxing the constraints 
imposed on the displacement parameters by the TLS 
model for any molecular site symmetry. 

Introduction 

For many chemical bonds, the contribution of bond- 
stretching vibrations to the atomic thermal displace- 
ment parameters can be expected to be relatively 
small in comparison with angle bending, torsional 
and intermolecular vibrations. This is the basis of the 
rigid-bond criterion for the physical soundness of 
independently refined anisotropic displacement par- 
ameters (Hirshfeld, 1976). If we define the coordinate 
system by the unit translations of the crystal lattice 
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